A novel compound regularization and fast algorithm for compressive sensing deconvolution
نویسندگان
چکیده
Compressive Sensing Deconvolution (CS-Deconvolution) is a new challenge problem encountered in a wide variety of image processing fields. Since CS is more efficient for sparse signals, in our scheme, the input image is firstly sparse represented by curvelet frame system; then the curvelet coefficients are encoded by a structurally random matrix based CS sampling technique. In order to improve the CS-deconvolution performance, a compound variational regularization model, which combined total variation and curvelet-based sparsity prior, is proposed to recovery blurred image from compressive measurements. Given the compressive measurements, we propose a novel fast algorithm using variable-splitting and Dual Douglas–Rachford operator splitting methods to produce high quality deblurred results. Our method considerably improves the visual quality of CS reconstruction for the given number of random measurements and reduces the decoding computational complexity, compared to the existing CS-deconvolution methods. & 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Ultrasound compressive deconvolution with ℓP-Norm prior
It has been recently shown that compressive sampling is an interesting perspective for fast ultrasound imaging. This paper addresses the problem of compressive deconvolution for ultrasound imaging systems using an assumption of generalized Gaussian distributed tissue reflectivity function. The benefit of compressive deconvolution is the joint volume reduction of the acquired data and the image ...
متن کاملPSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions
Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...
متن کاملA Simple Homotopy Proximal Mapping Algorithm for Compressive Sensing
In this paper, we present a novel yet simple homotopy proximal mapping algorithm for compressive sensing. The algorithm adopts a simple proximal mapping for l1 norm regularization at each iteration and gradually reduces the regularization parameter of the l1 norm. We prove a global linear convergence for the proposed homotopy proximal mapping (HPM) algorithm for solving compressive sensing unde...
متن کاملAn Efficient Algorithm For Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing by Chengbo Li A
An Efficient Algorithm For Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing
متن کاملAn Efficient Algorithm For Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing
An Efficient Algorithm For Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 119 شماره
صفحات -
تاریخ انتشار 2013